Abstract

Programmers can use gradual types to migrate programs to have more precise type annotations and thereby improve their readability, efficiency, and safety. Such migration requires an exploration of the migration space and can benefit from tool support, as shown in previous work. Our goal is to provide a foundation for better tool support by settling decidability questions about migration with gradual types. We present three algorithms and a hardness result for deciding key properties and we explain how they can be useful during an exploration. In particular, we show how to decide whether the migration space is finite, whether it has a top element, and whether it is a singleton. We also show that deciding whether it has a maximal element is NP-hard. Our implementation of our algorithms worked as expected on a suite of microbenchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.