Abstract
What is a sorting function—not a sorting function for a given ordering relation, but a sorting function with nothing given? Formulating four basic properties of sorting algorithms as defining requirements, we arrive at intrinsic notions of sorting and stable sorting: A function is a sorting function if and only it is an intrinsically parametric permutation function. It is a stable sorting function if and only if it is an intrinsically stable permutation function. We show that ordering relations can be represented isomorphically as inequality tests, comparators and stable sorting functions, each with their own intrinsic characterizations, which in turn provide a basis for run-time monitoring of their expected I/O behaviors. The isomorphisms are parametrically polymorphically definable, which shows that it is sufficient to provide any one of the representations since the others are derivable without compromising data abstraction. Finally we point out that stable sorting functions as default representations of ordering relations have the advantage of permitting linear-time sorting algorithms; inequality tests forfeit this possibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.