Abstract

Herbivore-induced plant volatiles, or HIPVs, are increasingly considered as a biocontrol enhancement tool by constitutively emitting these carnivore-attracting chemicals from agricultural fields. While ample data substantiate the olfactory preference of predators for HIPVs in laboratory environments, little is understood about the consequences of 'turning crops on' in the field. To explore the ramifications for arthropod pest management, a spatially explicit predator-prey population model was constructed that simulated a crop field releasing signals to recruit natural enemies from the surrounding landscape. Field size had an overriding influence on model outcome, both isolated as a single factor and interactively shaping responses to other parameters (e.g. habituation, foraging efficiency). Predator recruitment exponentially declined with increasing field size from nearly double the baseline density in small fields (225 individuals m(-2)) to a mere 4% increase (130 individuals m(-2)) in large fields. Correspondingly, HIPVs enhanced pest consumption in small fields (ca 50% fewer prey), while generating virtually no impact in large fields. Collectively, the model suggests that reducing the perimeter/core area ratio will ultimately constrain the utility of predator retention as a pest control tactic in commercial-sized fields and illustrates potential consequences of the widespread commercialization of this technology in agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call