Abstract

The safety of vulnerable coastal and offshore infrastructures requires an in-depth understanding of wave variability and climate drivers. We investigate the association of significant wave height (Hs) and peak wave period (Tp) with the co-occurrence of El Nino–Southern Oscillation (ENSO) and the Madden–Julian Oscillation (MJO) at the global scale. We calculate composites of daily anomalies in modelled Hs, Tp, and surface wind for periods of ENSO–MJO phase combinations. Calculations spanned November–March seasons over the period 1979–2018. Wave anomalies are widespread across the world’s oceans, with remarkable strength during several ENSO–MJO phase combinations, demonstrating strong tropic–tropic and tropic-extratropic teleconnections. Positive Hs anomalies are strongest in the Pacific Ocean during El Nino–MJO phase 8, in the Atlantic Ocean during ENSO-neutral-MJO phase 3, and in the Indian Ocean during ENSO-neutral-MJO phase 4. Positive Tp anomalies are strongest in the Pacific Ocean during La Nina–MJO phase 8, in the Atlantic Ocean during El Nino–MJO phase 1, and in the Indian Ocean during El Nino–MJO phase 8. In the Southern Ocean, the strongest Hs anomalies occur during El Nino–MJO phase 8, whereas in the Maritime Continent, they appear during ENSO-neutral-MJO phases 5–6. Despite previous studies finding low correlations of ENSO indices with wave parameters in the North Atlantic, our results suggest that ENSO-related conditions play a significant role in the area when combined with certain MJO-related conditions. This study also reveals that the wave anomalies associated with ENSO–MJO phase combinations can be twice as strong as those found in previous work, related only to the MJO. Therefore, considering multiple concurrent climate patterns in the analysis of wave anomalies is essential to developing more reliable coastal management plans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call