Abstract

Camembert cheese undergoes various biochemical changes during ripening, which lead to its unique aroma and typical flavor characteristics. This study aimed to systemically evaluate the primary biochemical events (lipolysis and proteolysis) and secondary metabolites (flavor compounds) of commercial Camembert during 56 days of ripening under packaging conditions. The changes of free fatty acid, free amino acids, soluble nitrogen, proteins/peptides distribution, odorant contribution, and volatile profiles were studied. Results showed that the lipolytic process was prevalent during the initial 14 days, while the proteolysis level continuously increased as the ripening period advanced, causing the index of ripening depth to increase from 4.8% to 13.9%. On day 28, the sample developed odorants with high modified frequency values of 94.3%. With the untargeted metabolomic approaches, two major (γ-butyrolactone and methyl heptenone) and four minor (3-methyl-1-butanol, γ-hexalactone, 2-nonanone, and dodecanoic acid) volatile markers were recognized to discriminate the ripening stages of Camembert cheese.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call