Abstract

Aluminium is an energy intensive material with an environmental footprint strongly dependent on the electricity mix consumed by the smelting process. This study models prospective environmental impacts of primary aluminium production according to different integrated assessment modeling scenarios building on Shared Socioeconomic Pathways and their climate change mitigation scenarios. Results project a global average carbon intensity ranging between 8.6 and 18.0 kg CO2 eq/kg in 2100, compared to 18.3 kg CO2 eq/kg at present, that could be further reduced under mitigation scenarios. Co-benefits with other environmental indicators are observed. Scaling aluminium production impacts to the global demand shows total emission between 1250 and 1590 Gt CO2 eq for baseline scenarios by 2050 while absolute decoupling is only achievable with stringent climate policy changing drastically the electricity mix. Achieving larger emission reductions will require circular strategies that go beyond primary material production itself and involve other stakeholders along the aluminium value chain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.