Abstract

In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper we characterize the energy functions that can be minimized by graph cuts. Our results are restricted to energy functions with binary variables. However, our work generalizes many previous constructions, and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration and scene reconstruction. We present three main results: a necessary condition for any energy function that can be minimized by graph cuts; a sufficient condition for energy functions that can be written as a sum of functions of up to three variables at a time; and a general-purpose construction to minimize such an energy function. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible, and then follow our construction to create the appropriate graph.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.