Abstract

The energetic profiles of a significant number of protein–DNA systems at 20 °C reveal that, despite comparable Gibbs free energies, association with the major groove is primarily an enthalpy-driven process, whereas binding to the minor groove is characterized by an unfavorable enthalpy that is compensated by favorable entropic contributions. These distinct energetic signatures for major versus minor groove binding are irrespective of the magnitude of DNA bending and/or the extent of binding-induced protein refolding. The primary determinants of their different energetic profiles appear to be the distinct hydration properties of the major and minor grooves; namely, that the water in the A+T-rich minor groove is in a highly ordered state and its removal results in a substantial positive contribution to the binding entropy. Since the entropic forces driving protein binding into the minor groove are a consequence of displacing water ordered by the regular arrangement of polar contacts, they cannot be regarded as hydrophobic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.