Abstract

<p>Observations and simulations show that an increase in aerosol concentration typically leads to an increase in liquid water path in precipitating stratocumulus clouds due to precipitation suppression, but once precipitation is fully suppressed, further increases in aerosol concentration typically lead to a reduction in liquid water path due to enhanced evaporation at cloud top. The increased evaporation is typically attributed directly to the presence of smaller, more numerous cloud droplets. However, observations suggest that the evaporation rate is primarily controlled by the entrainment mixing rate rather than the droplet properties at the tops of stratocumulus clouds. As such, aerosol-induced changes to droplet properties should not directly lead to faster evaporation. Our simulations suggest instead that the smaller, more numerous droplets enhance the cloud top maximum radiative cooling rate, which in turn increases the entrainment rate and speeds evaporation. Our results highlight that unlike integrated radiative cooling, maximum radiative cooling continues to increase with increasing liquid water path and remains sensitive to droplet properties at high liquid water path. As such, the role of radiation in driving aerosol-cloud interactions may need additional consideration in the future.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.