Abstract

In the brain, neuronal activation triggers a local increase in cerebral blood flow, a response named functional hyperemia. The extent to which functional hyperemia faithfully reports brain activation, spatially or temporally, remains a matter of debate. Here, we used the olfactory bulb glomerulus as a neurovascular model and two-photon microscopy imaging to investigate the correlation between calcium signals in glutamatergic terminals of olfactory sensory neurons and local vascular responses. We find that, depending on odor stimulation intensity, vascular responses are differently coupled to calcium signals. Upon moderate odor stimulation, glomerular vascular responses increase accordingly with calcium signals. In contrast, in silent glomeruli neighboring strongly activated ones and in glomeruli adapting upon high odor stimulation, vascular responses are independent of or negatively coupled to presynaptic calcium signals, respectively. Hence, functional hyperemia, a key signal used in functional imaging, can be, at times, an unreliable marker of local brain activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.