Abstract

The technique of galvanic vestibular stimulation (GVS) has been used for a long time. The stimulus produces stereotyped automatic postural and ocular responses. The mechanisms underlying these responses are not understood although they are commonly attributed to altered otolith output. Based on animal studies, it seems reasonable to assume that vestibular afferents from the otoliths and semicircular canals are affected similarly by GVS. With this assumption, and anatomical knowledge of the vestibular apparatus, a model is developed to describe the expected responses of vestibular afferents to percutaneous GVS and the physiological implications of this altered sensory signal. Bilateral bipolar GVS, the most commonly used technique, should produce a canal signal consistent with a strong ear-down roll towards the cathodal side, a smaller nose-to-cathode yaw, but no pitch signal. Bilateral bipolar GVS should also produce an otolith signal consistent with tilt towards the cathodal side or a translational acceleration towards the anodal side. The expected responses for other configurations of GVS are also described. The model appears consistent with published data on the ocular and postural responses to GVS, and suggests other testable hypotheses concerning postural, ocular and perceptual responses to GVS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call