Abstract
The possibility of experimentally testing the Bell–Kochen–Specker theorem is investigated critically, following the demonstrations by Meyer, Kent, and Clifton–Kent that the predictions of quantum mechanics are indistinguishable (up to arbitrary precision) from those of a non-contextual model, and the subsequent debate about the extent to which these models are actually classical or non-contextual. The present analysis starts from a careful consideration of these ‘finite-precision’ approximations. A stronger condition for non-contextual models, dubbed ontological faithfulness, is exhibited. It is shown that this allows us to approximately formulate the constraints in Bell–Kochen–Specker theorems, such as to render the usual proofs robust. Consequently, one can experimentally test to finite precision ontologically faithful non-contextuality, and thus experimentally refute explanations from this smaller class. We include a discussion of the relation of ontological faithfulness to other proposals to overcome the finite precision objection.This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.