Abstract

Since the first histological studies, enormous strides have been made in understanding the genetics and cell biology of enteric nervous system (ENS) formation. Several mitogenic and trophic factors have been implicated in the process of neural cell proliferation and differentiation. A number of natural (piebald-lethal mice [s l], lethal spotting mice [ls], spotting lethal rats [sl]) or target (Gfralpha1-deficient mice, ret.k - mice, and NT-4 knockout mice) mutations have been reported to produce developmental defects in neural crest cell migration, differentiation or survival. Study of these mutations continues to provide new insights into this complex system. In the present investigation, we showed that a lack of basic fibroblast growth factor (FGF) or growth hormone (GH) leads to morphological abnormalities of the enteric nervous system. Because knockouts, neither of FGF nor of GH, produce enteric nervous system defects substantial enough to compromise the ability of the gut to support life, we postulate that FGF and GH affect only a relatively small subset of neurons and/or that compensatory effects of other growth factors might occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.