Abstract

Abstract. Frequent severe droughts in recent years in the humid southeast U.S. have called for pragmatic approaches to better prepare for the consequences of droughts. This article examines how climate change will influence future droughts in Alabama and Georgia. Historic and future droughts were quantified by means of the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI), and changes in the frequency, severity, and spatial extent of droughts were examined using severity-area-frequency (SAF) curves. Precipitation and temperature data, regionally downscaled using a regional spectral model (RSM) for the southeast U.S. for the high emission scenario (A2) from three general circulation models (GCM), i.e., Hadley Centre Coupled Model Version 3 (HadCM3), Geophysical Fluid Dynamics Laboratory (GFDL), and Community Climate System Model (CCSM), from the Third Coupled Model Inter-comparison Project (CMIP3) archive were used for this study. Data from 1969 to 1999 were used for historical simulation, and 2039 to 2069 were used for future projections. The results showed that droughts similar to those in the past would be observed frequently in the future as well. The SPI and SPEI from the GFDL and HadCM3 models indicated higher frequency, severity, and spatial extent of droughts in the future. The SPI from the CCSM model did not show drastic changes in drought characteristics in either of the two states. The results of this research can be used by policymakers as a guide to determine how drought characteristics are expected to change in the future, and to develop drought mitigation policies. Keywords: Climate change, Drought, Drought indices, Severity-area-frequency curves, Standardized precipitation index, Standardized precipitation evapotranspiration index.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call