Abstract
PurposeThis paper aims to examine the impact of announcements related to 77 interventions by 46 listed Indian pharmaceutical firms during COVID-19 on the abnormal returns of the firms. The study also finds the variables which explain cumulative abnormal returns (CARs).Design/methodology/approachThis study uses standard event methodology to compute the abnormal returns of firms announcing pharmaceutical interventions in 2020 and 2021. Besides this, the multilayer perceptron technique is applied to identify the variables that influence the CARs of the sample firms.FindingsThe results show the presence of abnormal returns of 0.64% one day before the announcement, indicating information leakage. The multilayer perceptron approach identifies five variables that explain the CARs of the sample companies, which are licensing_age, licensing_size, size, commercialization_age and approval_age.Originality/valueThe study contributes to the efficient market literature by revealing how firm-specific nonfinancial disclosures affect stock prices, especially in times of crisis like pandemics. Prior research focused on determining the effect of COVID-19 variables on abnormal returns. This is the first research to use artificial neural networks to determine which firm-specific variables and pharmaceutical interventions can influence CARs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pharmaceutical and Healthcare Marketing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.