Abstract
We investigated a series of telechelic polyisobutylenes, previously shown to exhibit self-healing, by means of small-angle X-ray scattering and rheology. All samples form a dense, dynamic network of interconnected micelles resulting from aggregation of the functional groups and leading to viscoelastic behavior. The dynamic character of this network manifests itself in the appearance of terminal flow at long time scales. While the elastic properties are distinctly molecular weight dependent, the terminal relaxation time is controlled by the functional end groups. The yielding properties under large deformation during startup shear experiments can be understood by a model of stress activation of the dynamic bonds. Stress relaxation experiments help to separate the nonlinear response into two contributions: a fast collapse of the network and a slow relaxation, happening on the time scale of the terminal relaxation. The latter is also known to control self-healing of the collapsed structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.