Abstract

Abstract The layers of six stromatic migmatites from Northern, Western, and Central Europe display small but systematic chemical and mineralogical differences. At least five of these migmatites do not show any signs of largescale metamorphic differentiation, metasomatism, or segregation of melts. It is concluded, therefore, that the compositional layering observed in most of the investigated migmatites is due to compositional differences inherited from the parent rocks. Almost isochemical partial melting seems to be the most probable process transforming layered paragneisses, metavolcanics, or schists into migmatites.The formation of neosomes is believed to be caused by higher amounts of partial melts formed due to higher amounts of water moving into these layers. The neosomes have less biotite and more K‐feldspar, if K‐feldspar is present at all, than the adjacent mesosomes. These differences are small but systematic and seem to control the access of different amounts of water to the various rock portions. Petrographical observations, chemical data, and theoretical considerations indicate a close relationship between rock composition, rock deformation, transport of water, partial melting, and formation of layered migmatites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.