Abstract

In the geological record, hummocky dead-ice moraines represent the final product of the melt-out of dead-ice. Processes and rates of dead-ice melting in ice-cored moraines and at debris-covered glaciers are commonly believed to be governed by climate and debris-cover properties. Here, backwasting rates from 14 dead-ice areas are assessed in relation to mean annual air temperature, mean summer air temperature, mean annual precipitation, mean summer precipitation, and annual sum of positive degree days. The highest correlation was found between backwasting rate and mean annual air temperature. However, the correlation between melt rates and climate parameters is low, stressing that processes and topography play a major role in governing the rates of backwasting. The rates of backwasting from modern glacial environments should serve as input to de-icing models for ancient dead-ice areas in order to assess the mode and duration of deposition. A challenge for future explorations of dead-ice environments is to obtain long-term records of field-based monitoring of melt progression. Furthermore, many modern satellite-borne sensors have high potentials for recordings of multi-temporal Digital Elevation Models (DEMs) for detection and quantification of changes in dead-ice environments. In recent years, high-accuracy DEMs from airborne laser scanning altimetry (LiDAR) are emerging as an additional data source. However, time series of high-resolution aerial photographs remain essential for both visual inspection and high-resolution stereographic DEM production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.