Abstract

Electrocatalytic water splitting is a topic of investigation of numerous research groups for decades. Oxygen evolution reaction (OER), as a more complex and more demanding reaction, is more frequently studied, despite of the fact that the simpler hydrogen evolution reaction (HER), is generally not well understood. Nowadays, recurrent approach to electrocatalysis is conquest for more active and more stable electrode materials, very often lacking significant input to better understanding of reaction mechanisms or understanding of what are the drivers of electrocatalytic activity [1].Importantly, if one asks the key question from the conceptual point of view, and that is: what are the origins of electrocatalytic activity? - the answer will be, in the predominant majority of cases, like 70 years ago. Namely, paradigm of electrocatalysis is Sabatier principle, that suggests optimal (“not too strong, not too weak”) binding of intermediates as main precondition of high reaction rate [2]. Conventional wisdom suggests that confirmation of this should be relatively simple. Namely, Brönsted-Evans-Polanyi (BEP) relations suggest linear relationship between adsorption energy of key intermediates and activation energy. In other words, if we have reliable values of adsorption energies relevant for the electrochemical environment [3], they should form linear dependence with experimentally obtained activation energies.However, high-temperature hydrodynamic experiments on HER indicate that reducing of activation energy by tuning of adsorption energy of intermediates is not necessarily beneficial for enhancement of HER rate. Namely, HER rate is strongly influenced by preexponential frequency factor. Therefore, we propose discussion that will analyse several key aspects of HER electrocatalysis: 1) interplay of activation energy and preexponential factor as a driver of electrocatalytic activity 2) are BEP relations relevant for electrocatalysis 3) can we assess adsorption energies experimentally 4) what are relevant descriptors that shed light on HER activation process, 5) what else is important beyond Sabatier principle for rate of HER [1-7]. Figure 1. Graphical illustration of four interfacial descriptors relevant for HER. Adapted from Ref. [4] with permission from the PCCP Owner Societies, under the terms and conditions of the Creative Commons Attribution 3.0 Unported License.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.