Abstract

In the last century bat populations significantly declined mainly due to habitat fragmentation and degradation. As management-dependent species, bats need appropriate monitoring programs for the implementation of sound conservation strategies. However, bats’ small size, high mobility, elusiveness and nocturnal lifestyle make them difficult to survey. Non-Invasive Genetic Sampling (NIGS) may offer safe and cost-effective solutions, but requires well-planned sampling strategies, informative molecular markers and reliable laboratory protocols. Here we developed a NIGS protocol for species and individual identification of three mouse-eared bats, the Geoffroy’s bat ( Myotis emarginatus ), the long-fingered bat ( Myotis capaccinii ) and the Daubenton’s bat ( Myotis daubentonii ). Species identification was accomplished by mitochondrial (mt) DNA sequencing of reference tissue (n=49) and droppings (n=285) from Central-Northern Italy. In addition, we optimized a multiplex panel of seven microsatellites suitable for species and individual identification of the three species from droppings. We obtained a good success with mtDNA sequencing (245/285; 86%) and microsatellite genotyping (129/245; 53%). All microsatellites were successfully amplified with low error rates, and were polymorphic in the three Myotis species, with probabilities of identity 6 0.001 and observed heterozygosities of H o =0.48 in M. emarginatus , 0.62 in M. capaccinii and 0.71 in M. daubentonii . Our protocol represents a useful tool for population genetic studies on mouse-eared bats that could likely be extended to other bat species and provide useful information to implement effective conservation plans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call