Abstract

Extended-Range Bonner sphere spectrometers (ERBSSs) are well suited for measurements in high-energy stray neutron fields, where neutron energies extend from thermal to a few hundred MeV. These fields typically have a thermal peak, a fairly flat intermediate region, a medium energy peak at ∼1 MeV and a high-energy peak at ∼ a few 100 MeV. The data analysis is not straightforward: it requires unfolding with response functions that have a substantial amount of overlap, and the responses of the modified spheres (which provide information about the fluence at high energies) increase dramatically above ∼100 MeV. In this paper, I try to determine which of the main features of the spectrum are well determined by the data given optimal methods of analysis, and which features are subject to ambiguity. To do this, I analyse ERBSS measurements using two methods of analysis that are particularly useful for this purpose, Bayesian parameter estimation and maximum entropy unfolding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call