Abstract

AbstractThe spacing of parallel continental strike‐slip faults can constrain the mechanical properties of the faults and fault‐bounded crust. In the western US, evenly spaced strike‐slip fault domains are observed in the San Andreas (SA) and Walker Lane (WL) fault systems. Comparison of fault spacing (S) vs. seismogenic zone thickness (L) relationships of the SA and WL systems indicates that the SA has a higher S/L ratio (~8 vs. 1, respectively). If a stress‐shadow mechanism guides parallel fault formation, the S/L ratio should be controlled by fault strength, crustal strength, and/or regional stress. This suggests that the SA‐related strike‐slip faults are relatively weaker, with lower fault friction: 0.13–0.19 for the SA vs. 0.20 for WL. The observed mechanical differences between the San Andreas and Walker Lane fault systems may be attributed to variations in the local geology of the fault‐hosting crust and/or the regional boundary conditions (e.g. geothermal gradient or strain rate).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.