Abstract

Abstract Ice sheet models use observations to infer basal shear stress, but the variety of methods and datasets available has resulted in a wide range of estimates. Radar-based metrics such as reflectivity and specularity content have been used to characterize subglacial hydrologic conditions that are linked to spatial variations in basal shear stress. We explore whether radar metrics can be used to inform models about basal shear stress. At Thwaites Glacier, West Antarctica, we sample basal shear stress inversions across a wide range of ice sheet models to see how the basal shear stress distribution changes in regions of varying relative reflectivity and specularity content. Our results reveal three key findings: (1) Regions of high specularity content exhibit lower mean basal shear stresses (2) Wet and bumpy regions, as characterized by high relative reflectivity and low specularity content, exhibit higher mean basal shear stresses (3) Models disagree about what basal shear stress should be at the onset of rapid ice flow and high basal melt where relative reflectivity and specularity content are low.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call