Abstract

This paper describes an architecture for an agent to learn and reason about affordances. In this architecture, Answer Set Prolog, a declarative language, is used to represent and reason with incomplete domain knowledge that includes a representation of affordances as relations defined jointly over objects and actions. Reinforcement learning and decision-tree induction based on this relational representation and observations of action outcomes are used to interactively and cumulatively (a) acquire knowledge of affordances of specific objects being operated upon by specific agents; and (b) generalize from these specific learned instances. The capabilities of this architecture are illustrated and evaluated in two simulated domains, a variant of the classic Blocks World domain, and a robot assisting humans in an office environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call