Abstract

The diversity of placental structures in Eutherian mammals is such that drawing generalizations from the definitive forms is problematic. There are always areas of reduced interhaemal distance whether the placenta is epitheliochorial, synepitheliochorial, endotheliochorial or haemochorial. However, the thinning may be achieved by different means. The presence of a haemophagous area as an iron transport facilitator is generally associated with endotheliochorial placentae but is also found in sheep and goats (synepitheliochorial) and in tenrecs and hyaenas (haemochorial). Although similar chorioallantoic placentae are found within families, structure begins to diverge at the ordinal level and there is little correlation at the supraordinal level of phylogeny. Differences in formation and function of the yolk sac provide additional variation. There would appear to be considerable adaptive pressure for development or retention of the haemochorial type of chorioallantoic placenta. This type of placenta has several possible drawbacks including more ready passage of fetal cells to the maternal organism and, should the haemochorial condition be achieved early, oxidative stress. At any rate no animal larger than the human and gorilla has this type of placenta. The endotheliochorial condition is found in animals as large as the bears, manatee and elephants. In addition to the ungulates, the epitheliochorial condition is present in the largest animals with the longest gestation periods, the whales. Considering the length of time since the early stages of mammalian evolution, it is probable that few unmodified structural features are present in any currently surviving mammal. Nevertheless, more complete studies of divergent types of mammalian placenta should help our understanding of mammalian interrelationships as well as placental function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.