Abstract
We have performed an extensive set of all-atom molecular dynamics (MD) simulations of a bacterial proton-coupled oligopeptide transporter (POT) in an explicit membrane environment. We have characterized both the local and global conformational dynamics of the transporter upon the proton and/or substrate binding, within a statistical framework. Our results reveal a clearly distinct behavior for local conformational dynamics in the absence and presence of the proton at the putative proton binding residue E310. Particularly, we find that the substrate binding conformation is drastically different in the two conditions, where the substrate binds to the protein in a lateral/vertical manner, in the presence/absence of the proton. We do not observe any statistically significant distinctive behavior in terms of the global conformational changes in different simulation conditions, within the time scales of our simulations. Our extensive simulations and analyses call into question the implicit assumption of many MD studies that local conformational changes observed in short simulations could provide clues to the global conformational changes that occur on much longer time scales. The linear regression analysis of quantities associated with the global conformational fluctuations, however, provides an indication of a mechanism involving the concerted motion of the transmembrane helices, consistent with the rocker-switch mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.