Abstract
The oxidation of the Breslow intermediate resulting from the addition of an N-heterocyclic carbene (NHC) to benzaldehyde triggers a fast deprotonation, followed by a second electron transfer, directly affording the corresponding acylium at E > -0.8 V (versus Fc/Fc+). Similarly, the oxidation of the cinnamaldehyde analogue occurs at an even higher potential and is not a reversible electrochemical process. As a whole, and contrary to previous beliefs, it is demonstrated that Breslow intermediates, which are the key intermediates in NHC-catalyzed transformations of aldehydes, cannot undergo a single electron transfer (SET) with mild oxidants ( E < -1.0 V). Moreover, the corresponding enol radical cations are ruled out as relevant intermediates. It is proposed that oxidative NHC-catalyzed radical transformations of enals proceed either through SET from the corresponding electron-rich enolate or through coupled electron-proton transfer from the enol, in any case generating neutral capto-dative radicals. Relevant electrochemical surrogates of these paramagnetic species have been isolated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.