Abstract

AbstractAlthough many studies have attempted to reconstruct millennial‐scale hurricane patterns using various proxy‐based methods, it is still unclear what the most effective proxies are to identify storm surge deposits in different environmental settings. This study quantitatively compares the application of grain‐size, loss‐on‐ignition, stable isotopes, X‐ray fluorescence, and palynological proxies in paleotempestology from an organic‐rich environment in the Florida Everglades. The nonparametric tests indicate that only 9 among the 27 parameters (mean diameter, %water, %organic, %carbonate, Ca, Sr, Ca/Ti, Cl/Br, and marine microfossils) exhibited significant differences between storm‐surge and in situ deposits. The principal component analysis shows that five marine indicators (Sr, Ca, Ca/Ti, %Carbonate, and Marine microfossils) have the closest association with the allochthonous samples, while Cl/Br and Mz are the most sensitive proxies in low‐ and high‐energy environments, respectively. Moreover, organic geochemical proxies (e.g., δ13C and δ15N of bulk sedimentary organic matter) are ineffective for identifying storm‐surge deposits in organic‐rich mangrove environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call