Abstract

Abstract The near infrared reflectance spectroscopy (NIRS) method was used in the present study to compare earthworm-made soil aggregates to aggregates found in the surrounding bulk soil. After initially assessing the daily cast production of Metaphire posthuma , boxes with soil incubated with M. posthuma and control soils were subjected to wetting in order to reorganize the soil structure. After two months of incubation, soil aggregates produced by earthworms (casts and burrows), soil aggregates that were appeared to be unaffected by earthworms (bulk soil without visible trace of earthworm bioturbation from the earthworm treatment) and soil aggregates that were entirely unaffected by earthworms (control – no earthworm – treatment) were sampled and their chemical signatures analyzed by NIRS. The production of below-ground and surface casts reached 14.9 g soil g worm −1 d −1 and 1.4 g soil g worm −1 d −1 , respectively. Soil aggregates from the control soils had a significantly different NIRS signature from those sampled from boxes with earthworms. However, within the earthworm incubation boxes the NIRS signature was similar between cast and burrow aggregates and soil aggregates from the surrounding bulk soil. We conclude that the high cast production by M. posthuma and the regular reorganization of the soil structure by water flow in and through the soil lead to a relatively homogenous soil structure. Given these results, we question the relevance of considering the bulk soil that has no visible activity of earthworm activity as a control to determine the effect of earthworms on soil functioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.