Abstract

Quantum cryptography bases its security proofs on physical assumptions. A longstanding observation in the field is that we may be able to do more cryptographic tasks when we assume not only the laws of quantum mechanics but also the impossibility of superluminal signaling (i.e., that information cannot travel faster than the speed of light). Relativistic quantum cryptography takes into account the spatial locations of the parties involved and uses the impossibility of superluminal signaling as a basis for security. Previous efforts in this field have been fruitful, both theoretically and experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.