Abstract

Acacia mellifera is one of the most important encroaching woody plants in southern African savannas. Previous studies found that this species encroaches far more readily on rocky areas than on sandy substrates, although it grows larger on sandy substrates. Rocky substrates are known to retain more water than sandy substrates, which may be of vital importance during recruitment in semi-arid and arid environments. A number of studies have also indicated that competition with grasses may reduce the recruitment and biomass of tree seedlings. We created an experiment in a semi-arid environment (mean annual rainfall = 388 mm) that tested for the effects of rockiness on A. mellifera recruitment. We also tested the hypothesis that grasses effectively compete with A. mellifera in this environment by simulating the effect of grazing by clipping grasses from half the plots in both the rocky and sandy treatments. Significantly more A. mellifera seedlings established in plots where grasses were clipped than in control plots. A. mellifera seedlings had greater biomass on sandy substrates than on rocky substrates. No significant interaction effects were found between substrate and grass clipping treatment for either seedling number or biomass. We conclude that A. mellifera seedlings are more likely to encroach in habitats with low grass density, although they may achieve greater biomass on sandy soils. Thus, it may be the lower grass density rather than rockiness, which increases the encroachment observed in naturally rocky habitats. These results are also consistent with our observations that adult A. mellifera trees are larger on sandy soils than on rocky soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.