Abstract

In a sample of 60 French participants, we examined whether the variability in the behavioral deviation measured during the classical “paper and pencil” line bisection task was explained by individual laterality factors such as handedness and eye sighting dominance, as well as the hand used to bisect, and the spatial position of the line to bisect. The results showed the expected main effects of line position and hand used to bisect, as well as some interactions between factors. Specifically, the effect of the hand used to bisect on the deviation bias was different as a function of handedness and line position. In right-handers, there was a strong difference between the biases elicited by each hand, producing a hand-used asymmetry, observed for each spatial position of the line. In left-handers, there was no difference in deviation as a function of hand used to perform the bisection, except when all factors triggered attention toward the left side such as bisecting left-displaced lines, with the left dominant hand, producing a strong leftward deviation as compared to the reduced bias exhibited with the right non-dominant hand. Finally, the eye sighting dominance interacted with handedness and line position. Left-handers with a right sighting dominance showed a leftward bias when they bisected left-displaced lines, while right-handers with a left sighting dominance showed an inversed bias when they bisected rightward lines. Taken together, these findings suggest that the behavioral deviation bias relies on the integration of the hemispheric weights of the visuospatial processing of the stimuli, and the motoric component of the hand used to bisect, as well as those linked to individual laterality factors. When all these factors producing asymmetric cerebral activation coincide in the same direction, then their joint effect will provide the strongest asymmetric behavioral biases.

Highlights

  • In neurologically intact individuals, much research has shown the existence of perceptual asymmetries during free-viewing conditions

  • The aim of the present study was to evaluate the effects of individual laterality factors such as handedness and eye sighting dominance, as well as of visuospatial and motoric factors related to the task to be performed, on the line bisection deviation bias

  • In a sample of French participants enriched in lefthanders, we examined whether the variability in the behavioral deviation measured during the classical “paper and pencil” line bisection task was explained by handedness, the hand used to bisect, eye sighting dominance, and the spatial position of the line to bisect

Read more

Summary

Introduction

Much research has shown the existence of perceptual asymmetries during free-viewing conditions (for a review, Voyer et al, 2012). During the “paper and pencil” line bisection task, usually used to assess hemispatial neglect (Heilman et al, 1985; Doricchi and Angelelli, 1999; Sperber and Karnath, 2016), non-clinical population exhibits a small but consistent tendency to slightly mark to the left of the veridical midpoint (Jewell and McCourt, 2000), referred to as pseudoneglect (Bowers and Heilman, 1980) This attentional orientation toward the left hemispace would be related to the asymmetrical control of spatial attention over the hemispheres (Mesulam, 1981; Kinsbourne, 1987; Driver and Vuilleumier, 2001; Corbetta and Shulman, 2011), with a stronger activation of the right hemisphere, being the dominant hemisphere for visuospatial attentional function (Kinsbourne, 1970; Mesulam, 1999), leading to an over-representation of the left side of space and a shift of the subjective center of the line toward that side. These visuospatial factors (visual scanning to the left and visual stimulation of left hemispace) would activate the right hemisphere, and probably induce a stronger behavioral asymmetry

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call