Abstract

Functional reconstruction after resection of pelvic malignancies involving the acetabulum remains challenging. Numerous reconstruction methods have been proposed, but they are generally associated with mechanical and nonmechanical complications. To improve the function of patients with primary malignancies of the acetabulum after internal hemipelvectomy and reduce the complication rate after this procedure, we designed a series of three-dimensionally (3D) printed, custom-made, integrative hemipelvic endoprostheses with a porous structure and wanted to present the early results of using this construct to determine whether it could be considered a reasonable reconstruction option. We performed this study to (1) evaluate, in a small group of patients, whether the new endoprosthesis restores short-term lower-limb function; (2) identify short-term complications associated with the use of this endoprosthesis; and (3) assess osseointegration between the host bone and the 3D-printed integrative hemipelvic endoprosthesis with a porous structure. Between October 2016 and May 2017, our center treated 26 patients with malignancies involving the acetabulum. Thirteen of these patients received hemipelvic replacement with a 3D-printed, custom-made, integrative endoprosthesis, six received hemipelvic replacement with a modular endoprosthesis, four received radiotherapy, and three received external hemipelvectomy. Resection and reconstruction with a 3D-printed, custom-made, integrative endoprosthesis were indicated if the resection margin was the same as that achieved in hemipelvectomy, if reconstruction would preserve reasonable function after resection, if the patient had a good physical status and life expectancy longer than 6 months, and if the patient was willing to accept the potential risk of a 3D-printed, custom-made, endoprosthesis. The exclusion criteria were an inability to achieve a satisfactory surgical margin with limb salvage, inability to preserve the function of the limb because of tumor involvement of the sacral nerve or sciatic nerve, and unresectable and/or widely metastatic disease on presentation. Pain and function were evaluated with the 10-cm VAS score (range 0 to 10; a lower score is desirable), the 1993 version of the Musculoskeletal Tumor Society (MSTS-93) score (range 0 to 30; a higher score is desirable), and the Harris hip score ([HHS]; range 0 to 100; a higher score is desirable) were evaluated preoperatively and at a median of 27 months after reconstruction (range 24 to 31 months). The functional scores and complications were recorded after reviewing the patients' records. Osseointegration was assessed with digital tomosynthesis by two senior surgeons. We observed the trabecular structures connected to the implant surface to assess whether there was good osseointegration. The median preoperative VAS score, MSTS-93 score, and HHS were 5 (range 2 to 8), 14 (range 3 to 18), and 64 (range 20 to 76) points, respectively. At the latest follow-up interval, the median VAS score, MSTS-93 score, and HHS were 2 (range 0 to 6), 23 (range 15 to 27), and 82 (range 44 to 93) points, respectively. No deep infection, dislocation, endoprosthetic breakage, aseptic loosening, or local recurrence occurred. Two patients experienced delayed wound healing; the wounds healed after débridement. Using digital tomography, we found that all implants were well-osseointegrated at the final follow-up examination. A 3D-printed, custom-made, integrative hemipelvic endoprosthesis provides acceptable early outcomes in patients undergoing pelvic reconstruction. Osseointegration is possible, and we anticipate this will lead to biologic stability with a longer follow-up interval. The custom-made integrative design ensured precise implantation. Although a few patients in this study had only a short follow-up duration, the functional results were reasonable. We have observed no major complications so far, but this was a very small series and we caution that these are large reconstructions that will certainly result in complications for some patients. Our method uses a precise preoperative simulation and endoprosthesis design to aid the surgeon in performing challenging operations. If our early results are confirmed with more patients and longer follow-up and are replicated at other centers, this may be a reconstruction option for patients with periacetabular malignancies. Level IV, therapeutic study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call