Abstract

To my friend and colleague K.C. Reddy on occasion of his retirement. The notion of classical r-matrix is re-examined, and a definition suitable to differential (-difference) Lie algebras, – where the standard definitions are shown to be deficient, – is proposed, the notion of an O-operator. This notion has all the natural properties one would expect form it, but lacks those which are artifacts of finite-dimensional isomorpisms such as not true in differential generality relation End (V ) V ∗ ⊗ V for a vector space V . Examples considered include a quadratic Poisson bracket on the dual space to a Lie algebra; generalized symplectic-quadratic models of such brackets (aka Clebsch representations); and Drinfel’d’s 2-cocycle interpretation of nondegenate classical r-matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.