Abstract

We develop a method to characterize topological phase transitions for strongly correlated Hamiltonians defined on two-dimensional lattices based on the many-body Berry curvature. Our goal is to identify a class of quantum critical points between topologically nontrivial phases with fractionally quantized Hall (FQH) conductivity and topologically trivial gapped phases through the discontinuities of the many-body Berry curvature in the so-called flux Brillouin zone (fBZ), the latter being defined by imposing all possible twisted boundary conditions. For this purpose, we study the finite-size signatures of several quantum phase transitions between fractional Chern insulators and charge-ordered phases for two-dimensional lattices by evaluating the many-body Berry curvature numerically using exact diagonalization. We observe degeneracy points (nodes) of many-body energy levels at high-symmetry points in the fBZ, accompanied by diverging Berry curvature. We find a correspondence between the number and order of these nodal points, and the change of the topological invariants of the many-body ground states across the transition, in close analogy with Weyl nodes in non-interacting band structures. This motivates us to apply a scaling procedure, originally developed for non-interacting systems, for the Berry curvature at the nodal points. This procedure offers a useful tool for the classification of topological phase transitions in interacting systems harboring FQH-like topological order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.