Abstract

We introduce and study the quantum version of the differential operator algebra on Laurent polynomials and its associated Lie algebra over a field F of characteristic 0. The q-quantum torus Fq is the unital associative algebra over F generated by [Formula: see text] subject to the defining relations titj = qi,jtjti, where qi,i = 1, [Formula: see text]. Let D be a subspace of [Formula: see text] where ∂i is the derivation on Fq sending [Formula: see text] to [Formula: see text]. Then, the quantum differential operator algebra is the associative algebra Fq[D]. Assume that Fq[D] is simple as an associative algebra. We compute explicitly all 2-cocycles of Fq[D], viewed as a Lie algebra. More precisely, we show that the second cohomology group of Fq[D] has dimension n if D = 0, dimension 1 if dim D = 1, and dimension 0 if dim D > 1. We also determine all isomorphisms and anti-isomorphisms Fq[D] → Fq′[D′] of simple associative algebras, and all isomorphisms Fq[D]/F → Fq′[D′]/F of simple Lie algebras.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call