Abstract

We propose that Weyl triplons are expected to appear in the low energy magnetic excitations in the canonical Shastry-Sutherland compound, \ce{SrCu2(BO3)2}, a quasi-2D quantum magnet. Our results show that when a minimal, realistic inter-layer coupling is added to the well-established microscopic model describing the excitation spectrum of the individual layers, the Dirac points that appear in the zero-field triplon spectrum of the 2D model split into two pairs of Weyl points along the $k_z$ direction. Varying the strength of the inter-layer DM-interaction and applying a small longitudinal magnetic field results in a range of band-topological transitions accompanied by changing numbers of Weyl points. We propose inelastic neutron scattering along with thermal Hall effect as the experimental techniques to detect the presence of Weyl node in the triplon spectrum of this material. We show that the logarithmic divergence in the second derivative in thermal Hall conductance near phase transition from regime Weyl points to a regime with topologically gapped bands as well as a finite slope in the thermal Hall conductance as a function of magnetic field at zero magnetic field are promising evidence for the presence of Weyl triplons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.