Abstract

We study the effects of strong $1/r$ long-range Coulomb interactions in a Weyl semimetal. We consider a three-dimensional (3D) Dirac fermion system on a lattice with a time-reversal symmetry breaking term, and take into account $1/r$ long-range Coulomb interactions between the bulk electrons. This model is regarded as the case where magnetic impurities are doped into the bulk of a 3D topological insulator. With the use of the strong coupling expansion of the lattice gauge theory and the mean-field approximation, we analyze the system from the strong coupling limit. It is shown that parity symmetry of the system is spontaneously broken in the strong coupling limit, and a different type of the Weyl semimetal, in which time-reversal and parity symmetries are broken, appears in the strong coupling limit. A possible global phase diagram of a correlated Weyl semimetal is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.