Abstract
Weyl fermions are hypothetical chiral particles that can also manifest as excitations near three-dimensional band crossing points in lattice systems. These quasiparticles are subject to the Nielsen-Ninomiya "no-go" theorem when placed on a lattice, requiring the total chirality across the Brillouin zone to vanish. This constraint results from the topology of the (orientable) manifold on which they exist. Here, we ask to what extent the concepts of topology and chirality of Weyl points remain well defined when the underlying manifold is nonorientable. We show that the usual notion of chirality becomes ambiguous in this setting, allowing for systems with a nonzero total chirality. This circumvention of the Nielsen-Ninomiya theorem stems from a generic discontinuity of the vector field whose zeros are Weyl points. Furthermore, we discover that Weyl points on nonorientable manifolds carry an additional Z_{2} topological invariant which satisfies a different no-go theorem. We implement such Weyl points by imposing a nonsymmorphic symmetry in the momentum space of lattice models. Finally, we experimentally realize all aspects of their phenomenology in a photonic platform with synthetic momenta. Our work highlights the subtle but crucial interplay between the topology of quasiparticles and of their underlying manifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.