Abstract

A new concept of liquid entry pressure measurements is applied to study the hydrophobicity of microporous membranes for aqueous alcohol solutions. The effects of alcohol concentration, type of alcohol, and temperature on liquid entry pressure of the membrane have been studied. Two theoretical equations for the determination of membrane pore size have been proposed. The former equation was developed taking into account the deviation from the Laplace–Young equation due to the membrane structure by means of the structure angle. The latter equation was established considering only the range of alcohol concentration in which the dispersion component of liquid surface tension remains practically constant. Hydrophobicity has been expressed in terms of wetting surface tension, γLw. Based on these measurements, the maximum concentration before the spontaneous wetting occurs would be predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.