Abstract

We present drainage simulations that allow trapping of wetting phase in a simple but nontrivial granular medium, a dense random packing of equal spheres. The basis for the simulations is a network model derived directly from the known locations and dimensions of pore space features. This provides a means of evaluating the morphology of trapped wetting phase. The possible morphologies depend on the assumed connectivity of the wetting phase. At one extreme, we assume that the entire wetting phase except for pendular rings is connected. At the opposite extreme, we illustrate a low level of connectivity by assuming that pendular rings are trapped as soon as the pores surrounding them are drained; any wetting phase not yet drained from pore throats connecting these pores is also assumed to be trapped. Finally we consider a set of criteria involving larger neighborhoods within the network, which allows trapping in individual pores. Irreducible wetting phase saturations obtained in the latter case agree with experimental data. The numbers of pendular rings and liquid bridges are also consistent with observations. Because the agreement does not involve adjustable parameters, we conclude that a relatively simple, local evaluation of trapping criteria can yield physically representative wetting phase configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.