Abstract

Surfactant-enhanced spreading of water-based formulations over low-energy surfaces has attracted considerable interest in scientific and industrial communities because of its importance in agrichemical, pharmaceutical, coating and textile applications. Spreading of aqueous surfactant solutions is rather complex process than spreading of pure liquids due to a time-dependent adsorption/desorption of surfactant molecules at all three interfaces involved that results in changing the interfacial energy balance, producing interfacial tension gradients and, hence, Marangoni flows. The phase behavior and structures of surfactant aggregates in bulk solutions, structure and surface activity of surfactant molecule itself, physicochemical properties of substrates and a number of other parameters could strongly influence spreading dynamic of surfactant solutions on hydrophobic surfaces. Implication of all those factors on spreading behavior of solutions makes it hardly predictable from both theoretical and practical points of view. In this brief review we summarize different factors that determine spreading character of aqueous surfactant solutions on hydrophobic substrates such as polymers films and chemically modified solids. Focus is made on spreading and wetting behavior of nonionic hydrocarbon and organosilicone surfactants, which are widely used in commercial and analytical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.