Abstract

The interaction between water and organic substances is of extreme importance in physical, biological, and geological chemistries. Understanding the interactions between water and organic interfaces is one of the earliest chemical quandaries. In this research, self-assembled monolayers (SAMs) were used as a tool to investigate the interaction between water molecules and hydrophobic surfaces. Real-time adsorption and desorption kinetics of water on hydrophobic SAM surfaces was monitored using a new type of field effect transistor (FET)-like device called MOCSER (molecular controlled semiconductor resistor) coated with SAMs. A quartz crystal microbalance (QCM) was used as a complementary technique to give an estimate of total water mass adsorbed. It is shown that water adsorption depends on relative humidity and is reversible. The amount of adsorbed water increased with surface corrugation. The measurements suggest that adsorption takes place as small water clusters, originating on irregularities on the surface organic layer. Molecular dynamics simulations were carried out to study the interactions of water and hydrophobic surfaces as well. These simulations also suggest the formation of water microdroplets on hydrophobic surfaces, and indicate a strong correlation between increased surface corrugation and adsorption. This paper examines the possible consequences of these interactions on the properties of organic aerosols in the troposphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.