Abstract

AbstractSpontaneous imbibition plays an important role in many subsurface and industrial applications. Unveiling pore‐scale wetting dynamics, and particularly its upscaling to the Darcy model, are still unresolved. We conduct image‐based pore‐network modeling of cocurrent spontaneous imbibition and the corresponding quasi‐static imbibition in homogeneous sintered glass beads and heterogeneous Estaillades carbonate. We find that pore‐scale heterogeneity significantly influences entrapment of the nonwetting fluid, which in Estaillades is mainly because of the poor connectivity of pores. We show that wetting dynamics significantly deviates capillary pressure and relative permeability away from their quasi‐static counterparts. Moreover, we propose a nonequilibrium model for wetting permeability that well incorporates flow dynamics. We implement the nonequilibrium model into two‐phase Darcy modeling of a 10 cm long medium. Sharp wetting fronts are numerically predicted, which are in good agreement with experimental observations. Our studies provide insights into developing a two‐phase imbibition model with measurable material properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.