Abstract

Wetting is a common natural phenomenon with many useful applications. However, some fundamental aspects of wetting theory, such as determining the contact angle, remain unresolved. Two mainstream options are debated: whether the contact angle depends on the contact area or the contact line. To understand this, the present work used many-body dissipative particle dynamics to simulate wetting on chemically heterogeneous substrates. The simulations show that there is a ratio that separates contact angles into two regimes: a stable regime where the contact angles follow the contact-area-based Cassie-Baxter equation, and a fluctuating regime where contact angles are mainly determined by the contact line. The ring/droplet ratio, initial impact velocity, and wettability pair all play a role in the formation of the contact angle. This brief communication provides clear and sound observations to shed light on the determinations of the contact angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.