Abstract

A three-dimensional lattice Boltzmann method (LBM) has been developed for multiphase (liquid and vapor) flows with solid particles suspended within the liquid phases. The method generalizes our recent two-dimensional model [A. Joshi and Y. Sun, Phys. Rev. E 79, 066703 (2009)] to three dimensions, extends the implicit scheme presented therein to include interparticle forces and introduces an evaporation model to simulate drying of the colloidal drop. The LBM is used to examine the dynamical wetting behavior of drops containing suspended solid particles on homogeneous and patterned substrates. The influence of the particle volume fraction and particle size on the drop spreading dynamics is studied as is the final deposition of suspended particles on the substrate after the carrier liquid evaporates. The final particle deposition can be controlled by substrate patterning, adjusting the substrate surface energies and by the rate of evaporation. Some of the envisioned applications of the model are to develop a fundamental understanding of colloidal drop dynamics, predict particle deposition during inkjet printing of functional materials and to simulate the drying of liquids in porous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.