Abstract

Aqueous graphene nanofluids having concentrations 0.01, 0.1, and 0.3 vol.% were used as heat transfer media during quenching of ISO 9950 inconel alloy probe. Contact angle measurements were carried out to assess the wettability of graphene nanofluids. Nanofluids showed better wettability compared to base water with over 16% reduction in their contact angles. The cooling performance of the quench media was assessed by cooling curve analysis during quenching of an instrumented inconel probe from 860 °C into the quench medium. Recorded temperature readings showed longer vapor phase stage during quenching with nanofluids. The severity of nanofluids was found to be lower relative to water. During quenching with nanofluids, the estimated spatiotemporal heat flux transients at the metal/quenchant interface showed that more heat was removed during the vapor phase stage of cooling. The present study brings out the possibility of using stable water-graphene nanoplatelet suspensions for quench heat treatment of steel components requiring cooling severity between water and oil/polymer quenchants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.