Abstract

The wetting and spreading of nanofluids composed of liquid suspensions of nanoparticles have significant technological applications. Recent studies have revealed that, compared to the spreading of base liquids without nanoparticles, the spreading of wetting nanofluids on solid surfaces is enhanced by the structural disjoining pressure. Here, we present our experimental observations and the results of the statics analysis based on the augmented Laplace equation (which takes into account the contribution of the structural disjoining pressure) on the effects of the nanoparticle concentration, nanoparticle size, contact angle, and drop size (i.e., the capillary and hydrostatic pressure); we examined the effects on the displacement of the drop-meniscus profile and spontaneous spreading of a nanofluid as a film on a solid surface. Our analyses indicate that a suitable combination of the nanoparticle concentration, nanoparticle size, contact angle, and capillary pressure can result not only in the displacement of the three-phase contact line but also in the spontaneous spreading of the nanofluid as a film on a solid surface. We show here, for the first time, that the complete wetting and spontaneous spreading of the nanofluid as a film driven by the structural disjoining pressure gradient (arising due to the nanoparticle ordering in the confined wedge film) is possible by decreasing the nanoparticle size and the interfacial tension, even at a nonzero equilibrium contact angle. Experiments were conducted on the spreading of a nanofluid composed of 5, 10, 12.5, and 20 vol % silica suspensions of 20 nm (geometric diameter) particles. A drop of canola oil was placed underneath the glass surface surrounded by the nanofluid, and the spreading of the nanofluid was monitored using an advanced optical technique. The effect of an electrolyte, such as sodium chloride, on the nanofluid spreading phenomena was also explored. On the basis of the experimental results, we can conclude that a nanofluid with an effective particle size (including the electrical double layer) of about 40 nm, a low equilibrium contact angle (<3°), and a high effective volume concentration (>30 vol %) is desirable for the dynamic spreading of a nanofluid system with an interfacial tension of 0.5 mN/m. Our experimental observations also validate the major predications of our theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.