Abstract

The capillary bridge formed between a solid spherical surface and an infinite liquid bath is an efficient technique for characterizing the adhesion property of a solid surface. When the solid surface is pulled out of the liquid at a sufficiently high velocity, a thin liquid film is deposited on the solid and drains more slowly than the central capillary bridge. The retraction kinetics of this "pancake" and the critical velocity above which it appears are studied as a function of the viscosity of the liquid or the wettability of the solids. The dynamics of the liquid film follows the classical law of dynamic dewetting. This makes the capillary bridge test, used in the dynamical regime, a very efficient tool for discriminating between antiadhesive coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call