Abstract
In the present study, the membrane distillation (MD) process was studied with the use of commercial polytetrafluoroethylene (PTFE) capillary membranes. For this purpose, both solutions with NaCl concentrations up to 300 g/L and brines contaminated with oil (70-120 mg/L) were used as feeds. The membrane's wetting resistance was tested by conducting long-term experiments for over 3500 h. Using detailed studies, it has been shown that increasing the salt concentration from 35 to 300 g/L resulted in a 50% reduction in the permeate flux. Nevertheless, the membranes retained 100% of the salt rejection after 2000 h of the module's operation. Moreover, it has been found that performing the MD process with brines contaminated with oil (120 mg/L) led to the wetting of some membranes pores, which it turn resulted in an increase in the distillate's conductivity to 450 µS/cm after 700 h running the process. The mechanism of pore wetting by oil droplets adsorbed on the membrane's surface was presented. Finally, the proposed method of membrane cleaning with the use of a solvent allowed restoring the initial MD module's performance. Consequently, both the permeate flux and distillate conductivity were stable during the MD of the feed containing 35 g/L of NaCl over the next 280 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.